ระบบแมชชีนเลิร์นนิ่งมีทั้งความซับซ้อน และแตกต่างไม่ซ้ำกัน เพราะมีองค์ประกอบจำนวนมาก และมีผู้เกี่ยวข้องหลายฝ่าย อีกทั้งการสร้างระบบขึ้นอยู่กับข้อมูล ซึ่งแต่ละกรณีก็มีข้อมูลไม่เหมือนกัน หนังสือ "Designing Machine Learning Systems" เล่มนี้ จึงเสนอการเรียนรู้แบบองค์รวม โดยให้แนวทางการออกแบบระบบ ML ที่วางใจได้ รองรับการปรับขนาด บำรุงรักษาง่าย และปรับเปลี่ยนให้เข้ากับสภาพแวดล้อม และข้อกำหนดทางธุรกิจที่เปลี่ยนแปลงได้เนื้อหาภายในเล่มจะช่วยให้คุณเรียนรู้ในการรับมือกับสถานการณ์ต่าง ๆ อาทิ ขั้นตอนทางวิศวกรรมข้อมูล และการเลือกตัวชี้วัดที่เหมาะสม และการเลือกตัวชี้วัดที่เหมาะสมเพื่อตอบโจทย์ธุรกิจ การสร้างกระบวนการอัตโนมัติสำหรับการพัฒนาแบบต่อเนื่อง การประเมิน การปรับใช้และการอัพเดทโมเดล การพัฒนาระบบตรวจสอบ เพื่อตรวจจับและแก้ไขปัญหาที่อาจพบขณะใช้งาน สถาปัตยกรรมของแพล็ตฟอร์ม ML ที่ประยุกต์ใช้งานได้หลากหลายกรณี การพัฒนาระบบ ML ที่มีความรับผิดชอบต่อสังคมและธุรกิจ จึงเหมาะสำหรับผู้บริหารไอทียุคใหม่, CIO, MIS Manager, Data Scientist และผู้สนใจทำโปรเจกต์ ML/AI ทั่วไป เพื่อวางแผนการผลิต และพัฒนาโมเดลและแอพพลิเคชันด้าน ML/AI ให้มีประสิทธิภาพ รวดเร็ว ถูกต้องเชื่อถือได้